Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers
نویسندگان
چکیده
Osh/Orp proteins transport sterols between organelles and are involved in phosphoinositide metabolism. The link between these two aspects remains elusive. Using novel assays, we address the influence of membrane composition on the ability of Osh4p/Kes1p to extract, deliver, or transport dehydroergosterol (DHE). Surprisingly, phosphatidylinositol 4-phosphate (PI(4)P) specifically inhibited DHE extraction because PI(4)P was itself efficiently extracted by Osh4p. We solve the structure of the Osh4p-PI(4)P complex and reveal how Osh4p selectively substitutes PI(4)P for sterol. Last, we show that Osh4p quickly exchanges DHE for PI(4)P and, thereby, can transport these two lipids between membranes along opposite routes. These results suggest a model in which Osh4p transports sterol from the ER to late compartments pinpointed by PI(4)P and, in turn, transports PI(4)P backward. Coupled to PI(4)P metabolism, this transport cycle would create sterol gradients. Because the residues that recognize PI(4)P are conserved in Osh4p homologues, other Osh/Orp are potential sterol/phosphoinositol phosphate exchangers.
منابع مشابه
Lipid traffic: Osh4p makes an unexpected exchange
A new study in this issue (De Saint-Jean et al. 2011. J. Cell Biol. http://dx.doi.org/jcb.201104062) reveals that the sterol transfer protein Osh4p can also transport the signaling phospholipid phosphatidylinositol 4-phosphate (PI(4)P), which binds to the same site in Osh4p as sterol. This finding helps explain some previously published studies and also indicates that lipid/sterol exchange coul...
متن کاملOSBP-related proteins: liganding by glycerophospholipids opens new insight into their function.
Oxysterol-binding protein (OSBP) and its homologs designated OSBP-related (ORP) or OSBP-like (OSBPL) proteins constitute a conserved family of lipid binding/transfer proteins (LTP) in eukaryotes. The mechanisms of ORP function have remained incompletely understood, but they have been implicated as intracellular sterol sensors or transporters. A number of studies have provided evidence for the r...
متن کاملOsh4p is needed to reduce the level of phosphatidylinositol-4-phosphate on secretory vesicles as they mature
Phosphatidylinositol-4-phosphate (PI4P) is produced on both the Golgi and the plasma membrane. Despite extensive vesicular traffic between these compartments, genetic analysis suggests that the two pools of PI4P do not efficiently mix with one another. Several lines of evidence indicate that the PI4P produced on the Golgi is normally incorporated into secretory vesicles, but the fate of that po...
متن کاملLipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues
Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein-related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites. We f...
متن کاملNonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein–related proteins and phosphoinositides
Sterols are moved between cellular membranes by nonvesicular pathways whose functions are poorly understood. In yeast, one such pathway transfers sterols from the plasma membrane (PM) to the endoplasmic reticulum (ER). We show that this transport requires oxysterol-binding protein (OSBP)-related proteins (ORPs), which are a large family of conserved lipid-binding proteins. We demonstrate that a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 195 شماره
صفحات -
تاریخ انتشار 2011